Математическая модель массового обслуживания при неоднородных приборах и раздельных очередях на основе конечных автоматов

05.13.18 – Математическое моделирование, численные методы и комплексы программ

Автореферат диссертации на соискание ученой степени кандидата технических наук

Самара - 2013
Работа выполнена на кафедре «Прикладная математика и информатика» в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Самарский государственный технический университет».

Научный руководитель: Котенко Андрей Петрович, кандидат физико-математических наук, доцент

Официальные оппоненты: Тарасов Вениамин Николаевич, доктор технических наук, профессор, ФГБОУ ВПО «Поволжский государственный университет телекоммуникаций и информатики», кафедра «Программное обеспечение и управление в технических системах», заведующий кафедрой

Коваленко Алексей Гаврилович, доктор физико-математических наук, профессор ФГБОУ ВПО «Самарский государственный университет», кафедра «Математика и бизнес-информатика», профессор

Ведущая организация: ФГБОУ ВПО «Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)»

Защита диссертации состоится «4» декабря 2013 года в 11 часов на заседании диссертационного совета Д 212.217.03 ФГБОУ ВПО «Самарский государственный технический университет» по адресу: 443010, г. Самара, ул. Галактионовская, 141, к. №6, ауд. 33.

С диссертацией можно ознакомиться в библиотеке Самарского государственного технического университета по адресу: 443100, г. Самара, ул. Первомайская, 18, к. №1.

Отзывы на автореферат в двух экземплярах, заверенные печатью, просим присылать по адресу: 443100, г. Самара, ул. Молодогвардейская, 244, Главный корпус СамГТУ, ученому секретарю диссертационного совета Д 212.217.03; факс: (846) 278-44-00; E-mail: zoteev-ve@mail.ru

Автореферат разослан « » __________ 2013 г.

Учёный секретарь диссертационного совета Д 212.217.03,
д.т.н. Зотеев В.Е.
Общая характеристика работы

Актуальность исследования

Модели массового обслуживания позволяют оптимизировать работу сложных систем с большим количеством обслуживающих приборов. Такие модели позволяют вычислять вероятность простой, вероятности отказа, динамику загруженности, и тем самым выявлять «узкие» места подобных комплексов.

Существует большое количество аналитических методов моделирования процессов массового обслуживания с однородными приборами (т.е. приборами одинаковой производительности) и общей очередью (общим накопителем для ожидающих заявок). Системы же с раздельными накопителями, которые уже не могут быть описаны графом гибели-размножения, были рассмотрены лишь в нескольких работах по моделям с многосекционной памятью, при этом постановка задачи в формулировке как теории массового обслуживания (ТМО), так и математической статистики отсутствует. Такие системы также рассматривались в работах по моделям со случайным выбором прибора, в т.ч. с групповым входом, в контексте исследования систем с приоритетным обслуживанием.

Значительно лучше изучены системы массового обслуживания (CMO) с неоднородными приборами и общей очередью. Для них получены специальные вычислительные процедуры на основе таких качественных свойств оптимальной диспетчеризации, как пороговый характер и монотонность. Для таких систем рассчитаны оптимальные параметры управления и найдены показатели производительности при различных диспетчеризациях, включая и неоптимальные.

Системы массового обслуживания с неоднородными приборами и раздельными очередями широко распространены на практике в задачах оптимизации производственных комплексов, локально-вычислительных сетей и железнодорожных узлов. Задача аналитического моделирования таких процессов массового обслуживания, являющихся объектом исследования диссертации, была решена только для систем с упорядоченным входом. Особо следует отметить, что подавляющее большинство аналитических методов предполагают, что потоки в системе являются либо простейшими, либо допускают аппроксимацию таковыми. Моделирование процессов массового обслуживания данным методом подразумевает отсутствие последействия у потоков. Наличие функциональной зависимости между моментами появления новых заявок нарушает данное условие.

Что касается методов имитационного моделирования, то область применения имеющихся на рынке систем динамического моделирования (в первую очередь, GPSS World и Matlab Simulink) также ограничена, когда речь идет о CMO рассматриваемого типа, что связано с отсутствием удовлетворительных методов математического описания подобных CMO.

Таким образом, разработка и обоснование методов преодоления указанных проблем определяет актуальность рассматриваемой в диссертации тематики.
Объектом исследования являются системы массового обслуживания с приборами, имеющими различную производительность и раздельные независимые накопители в отсутствии упорядоченного входа.

Предметом исследования настоящей диссертационной работы являются методы математического моделирования процессов массового обслуживания, основанные на описании их конечными автоматами.

Цели и задачи исследования. Целью настоящей диссертационной работы является разработка математической модели и комплекса программ для статистического моделирования процессов массового обслуживания при неоднородных приборах и раздельных очередях с помощью конечных автоматов.

В связи с поставленной целью предполагается решить следующие задачи:

1. Разработать математическую модель массового обслуживания при неоднородных приборах и раздельных очередях с использованием конечных автоматов.

2. Создать комплекс программ автоматического построения и визуализации орграфа состояний СМО с неоднородными приборами и раздельными очередями как со случайным выбором прибора, так и в случае детерминированной диспетчеризации входных заявок.

3. В целях статистического моделирования процессов массового обслуживания при неоднородных приборах и раздельных очередях разработать методику моделирования потоков событий системы с сохранением эмпирической структуры их случайных составляющих.

4. Реализовать разработанную с использованием конечных автоматов математическую модель массового обслуживания при неоднородных приборах и раздельных очередях в комплексе программ статистического моделирования работы СМО.

Для разрабатываемой модели массового обслуживания действуют следующие ограничения: длина очередей ограничена; время ожидания не ограничено; все заявки во входящем потоке принадлежат одному типу и могут быть обслужены любым прибором системы; действует дисциплина обслуживания без приоритетов.

Методы исследования. Для решения поставленных задач и достижения намеченной цели использованы методы математического моделирования, теории вероятностей, теории автоматов, теории графов.

Научная новизна диссертационной работы определяется следующими результатами:

1. Разработана математическая модель массового обслуживания на основе представления СМО конечными автоматами, которая в отличие от существующих подходов позволяет исследовать СМО с неоднородными приборами и раздельными очередями при различных законах распределения интервалов времени между событиями потоков, а также при наличии у потоков эффекта последействия.
2. Предложен метод получения явных уравнений состояния СМО, представленной конечным автоматом, из рекурсивных. Этот подход, в отличие от существующих, позволяет определить состояние системы в произвольный момент времени $n+t$ по последовательности входных сигналов и ее состоянию в произвольный момент времени n, что позволяет снизить затраты машинного времени в ходе статистического моделирования процессов массового обслуживания.

3. Разработан численный метод статистического моделирования потоков событий системы, который в отличие от существующих подходов к статистическому моделированию процессов массового обслуживания, позволяет на основе имеющейся серии наблюдений получать требуемое количество ее статистических реализаций с сохранением структуры стохастической компоненты.

4. Создан комплекс программ, позволяющий в отличие от существующих систем динамического моделирования (таких как Matlab Simulink, GPSS) проводить статистическое моделирование процессов массового обслуживания при неоднородных приборах и раздельных очередях, а также реализован алгоритм автоматической визуализации орграфа состояний СМО данного типа.

Положения, выносимые на защиту:

1. Математическая модель массового обслуживания при неоднородных приборах и раздельных очередях в виде конечного автомата.

2. Методика получения явных уравнений состояния СМО с неоднородными приборами и раздельными очередями, представленной конечным автоматом.

3. Метод статистического моделирования временных рядов с сохранением структуры стохастической компоненты эмпирического ряда и его применение в рамках статистического моделирования процессов массового обслуживания при неоднородных приборах и раздельных очередях.

4. Комплекс программ статистического моделирования процессов массового обслуживания при неоднородных приборах и раздельных очередях и автоматического построения орграфа состояний СМО.

Теоретическая и практическая значимость исследований.

1. Предложенные модели и алгоритмы имеют универсальный характер и применимы для вычисления динамики таких характеристик как нагрузка на каждый прибор системы, вероятность отказа, вероятность простоя в задачах оптимизации локально-вычислительных сетей, работы производственных комплексов, железнодорожных станций и т.д.

2. Созданный комплекс программ позволяет в ходе статистического моделирования процессов массового обслуживания при неоднородных приборах и раздельных очередях оперативно менять регулярную составляющую входного потока и закон распределения интервалов времени между появлением заявок.

3. Реализованная программа автоматического построения орграфа состояний СМО эффективно визуализирует граф в случае трех и более приборов.
4. Разработанные алгоритмы и программы статистического моделирования и автоматического построения графа состояний СМО с неоднородными приборами и раздельными очередями зарегистрированы в фонде программ и алгоритмов Федеральной службы по интеллектуальной собственности (Роспатент).

Достоверность результатов, приведенных в диссертационной работе, обеспечивается: сопоставлением с результатами других исследований; согласованностью с результатами аналитического моделирования в частном случае пуссоновских потоков событий; результатами внедрения разработанного комплекса программ отделом коммерческой работы в сфере грузовых перевозок ОАО «РЖД» в рамках проекта по оптимизации работы станций налива нефтепродуктов.

Внедрение результатов диссертационного исследования. Разработанные модели, методы и комплекс программ внедрены отделом коммерческой работы в сфере грузовых перевозок Башкирского центра организации работы железнодорожных станций в рамках проекта по созданию автоматической системы управления (АСУ) диспетчеризации порожних вагонов по станциям налива нефтепродуктов Бензино-Черниковского узла; использованы в учебном процессе кафедры «Прикладная математика и информатика» ФГБОУ ВПО «СамГТУ» и включены в лекционный материал дисциплин «Методы исследования операций», «Дискретная математика», «Теория формальных языков», «Теория вероятностей и математическая статистика».

Публикации. Основные результаты диссертационной работы опубликованы в 20 научных работах, из них 4 статьи в рецензируемых журналах из перечня ВАК и 2 свидетельства Роспатента о государственной регистрации программы для ЭВМ.
Личный вклад автора. Работы [2, 7, 11-19] выполнены самостоятельно, в работах [1, 3-6, 8-10, 20] диссертанту принадлежит совместная постановка задачи, лично соискателем построены решения задач, разработано алгоритмическое и программное обеспечение, выполнены расчеты и анализ результатов.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения, списка литературы и приложений, в которых приведены листинг разработанных программ. Общий объем диссертации составляет 147 страниц, включая 54 рисунка и 14 таблиц. Библиографический список включает 98 наименований.

Содержание работы

Во введении обоснована актуальность диссертационной работы, сформулированы предмет и объект, аргументирована научная новизна исследований, показана их теоретическая и практическая значимость.

В первой главе приводится обзор литературы и постановка задач исследования. Проанализировано становление классической теории массового обслуживания и определяется круг задач, которые можно отнести к классическим задачам ТМО; сделаны обзоры работ, посвященных СМО с раздельными очередями и неоднородными приборами.

Первая постановка задачи моделирования процессов массового обслуживания при раздельных очередях к обслуживающим приборам была сделана в рамках исследования систем с многосекционной памятью для СМО с двумя приборами. Дальнейшее обобщение модели для произвольного количества приборов удалось выполнить лишь в отдельных случаях случайной неоптимальной диспетчеризации. Сделан вывод о том, что аналитические методы ТМО плохо распространяются на системы данного типа, особенно в случае большого числа приборов, когда использование численных методов становится затруднительным.

Значительно лучше изучены СМО с неоднородными приборами при общей очереди. В диссертации проанализированы первые постановки данной задачи для двух приборов, и дальнейшие ее обобщения вплоть до работ, где для произвольного количества приборов разной производительности была сформулирована и доказана теорема об оптимальной пороговой политике управления подобными СМО. Сделан вывод о том, что разработанные аналитические методы применимы лишь к отдельным законам распределения интервалов времени между событиями (преимущественно для показательного).

При этом СМО с раздельными очередями при неоднородных приборах в условиях недетерминированного входящего потока удалось аналитически смоделировать только в случае упорядоченного входа, когда заявка встает в очередь на

обслуживание к первому прибору, у которого в очереди имеется свободное место, что не соответствует оптимальной диспетчеризации заявок.

Таким образом, к недостаткам классического аналитического подхода к моделированию процессов массового обслуживания при неоднородных приборах и раздельных очередях относятся применимость лишь к системам с простейшими потоками (или потоками, которые могут быть аппроксимированы таковыми) и с отсутствием последействия у потоков (т.е. такой подход уже неприменим к СМО с самым простым регулярным входящим потоком); наличие эффективных решений только для однородных марковских цепей; сложность составления уравнений Кольмогорова для СМО с неоднородными приборами и раздельными очередями большой размерности.

В конце главы на основе проведенного анализа определены задачи диссертационного исследования.

Во второй главе разработаны методы математического моделирования процессов массового обслуживания при неоднородных приборах и раздельных очередях с использованием конечных автоматов.

Разработана нотификация СМО с различными каналами, а также введено понятие сигнатуры системы, однозначно описывающей минимально необходимые для моделирования характеристики данной СМО:

$$T(\mu_1, \mu_2, \ldots, \mu_k; m_i, m_2, \ldots, m_i, \ldots, m_k),$$

где μ_i – пропускная способность, а m_i – число мест в очереди i-того канала, $i \in \{1, k\}; k>0$, k – количество каналов СМО. Введено понятие диспетчеризации входных заявок. Показано, как изменяется ограхф состояний СМО с различными каналами при введении диспетчеризации. Предложен следующий протокол диспетчеризации входных заявок: пусть очередная входная заявка обнаруживает систему в состоянии $(x_1, x_2, \ldots, x_k; y_1, y_2, \ldots, y_k)$, где $x_i=1$, если i-ый канал занят, $x_i=0$, если свободен, y_i соответствует наполненности очереди этого канала, не являющегося состоянием отказа $(1, 1, \ldots, 1, m_1, m_2, \ldots, m_k)$. Если существует единственный канал (с номером i), способный принять заявку $\left(0 \leq y_i \leq \frac{1}{m_i-1}\right)$, то заявка направляется к нему. В противном случае оптимальным считаем выбор i-того канала обслуживания, способного обработать заявку с минимальным средним суммарным временем T обслуживания попавших в него заявок:

$$T = \min_{i: 0 \leq y_i \leq \frac{1}{m_i-1}} \mu_i^{-1}(y_i + 1 + \chi_i),$$

где χ_i – случайная величина, характеризующая незавершённость обработки заявки, находящейся в i-том канале в момент поступления новой заявки, $0 \leq \chi_i \leq 1$.
Даны модифицированные определения детерминированного и стохастического конечного автомата, которые используются при моделировании процессов массового обслуживания, а также сформулированы их свойства.

Разработана методика математического моделирования СМО с различными каналами при указанной детерминированной диспетчеризации, оптимизирующей работу СМО по среднему времени нахождения заявки в системе при минимизации вероятности отказа, и недетерминированной выработкой сигналов на освобождение приборов вероятностным конечным автоматом. Методика описана на примере СМО с двумя неоднородными приборами пропускной способности $\mu_1 > \mu_2$ без очереди (сигнатура $T=T(\mu_1, \mu_2; 0,0)$). Ее поведение в дискретном времени $n = 0, 1, 2, \ldots$ представлено недетерминированным конечным автоматом $K(S, A)$ с алфавитом внутренних состояний $S=\{(00),(01),(10),(11)\}$ без выделенных начального и конечного состояний, входным алфавитом $A=\{0,1\}$ и пустым выходным алфавитом. Приведен ортограф состояний системы и выведены ее уравнения состояния с нелинейными нестационарными рекурсивными стохастическими булевыми функциями в правой части уравнений состояний НКА $K(S, A)$.

Для СМО с детерминированной диспетчеризацией и недетерминированной выработкой сигналов на освобождение приборов возможно избавиться от стохастичности дуг ортографа и перейти к детерминированному конечному автомату за счет расширения входного алфавита. Рекурсивная система нестochasticских уравнений состояния подобной СМО выглядит следующим образом:

$$
\begin{align*}
 s_1(n+1) &= a_1 \oplus a_2 a_2 \oplus a_2 s_1 \oplus a_2 a_2 s_1 = \alpha_n \oplus \beta_n s_1(n), \\
 s_2(n+1) &= a_1 s_1 \oplus a_1 a_2 s_1 \oplus a_2 s_2 \oplus a_2 a_2 s_2 = \gamma_n \oplus \delta_n s_2(n) ; \\
 \alpha_n := a_1(n) a_2(n) \in \{0,1\}, \quad \beta_n := a_1(n) a_2(n) \in \{0,1\}; \\
 \gamma_n := a_1(n) a_2(n) s_1(n) \in \{0,1\}, \quad \delta_n := a_2(n) \oplus a_1(n) a_2(n) s_1(n) \in \{0,1\},
\end{align*}
$$

где \oplus – бинарная операция «исключающее или» алгебры Жегалкина.

Разработан алгоритм получения последовательности состояний СМО по заданной последовательности входных сигналов и начальному состоянию. Явные уравнения состояния конечного автомата позволяют существенно снизить затраты машинного времени на проведение статистического моделирования процессов массового обслуживания. В диссертационной работе показано, как применить данный алгоритм к преобразованию рекурсивных уравнений состояния СМО в различных случаях детерминированной или недетерминированной диспетчеризации при детерминированной или стохастической выработке сигналов на освобождение приборов на примере СМО сигнатуры $T=T(\mu_1, \mu_2; 0,0)$.

Так, для рассмотренной СМО явные уравнения состояний имеют вид:
\[
\sum_{t=0}^{n} \alpha_{n-t} \oplus s_1(0) \leftarrow \left(\forall k \in \overline{0,n} \Rightarrow \beta_k = a_1(k) a_2(k) = 1 \right)
\]
\[
\sum_{t=0}^{m-1} \alpha_{m-t} \leftarrow (m \geq n) \wedge \left(\forall k \in \overline{0,n-1} \Rightarrow \beta_k = a_1 a_2 = 1 \right) \wedge \left(\beta_n = 0 \right),
\]

\[
\sum_{t=0}^{n} \gamma_{n-t} \oplus s_2(0) \leftarrow \left(\forall k \in \overline{0,n} \Rightarrow \delta_k = a_2(k) \oplus a_1(k) a_2(k) s_1(k) = 1 \right)
\]
\[
\sum_{t=0}^{m-1} \gamma_{m-t} \leftarrow (m \geq n) \wedge \left(\forall k \in \overline{0,n-1} \Rightarrow \delta_k = 1 \right) \wedge \left(\delta_n = a_2 \oplus a_1 a_2 s_1 = 0 \right).
\]

Для СМО с детерминированной диспетчеризацией и детерминированной выработкой сигналов на освобождение приборов получены явные уравнения состояний отдельно для четных и нечетных моментов модельного времени:

\[
\sum_{t=0}^{2n} \alpha_{2n-2t} \oplus s_1(0) \leftarrow \left(\forall k \in \overline{1,n} \Rightarrow \beta_{2k} = \frac{a(2k) a(2k-1) = 1}{a(2k) a(2k-1) = 1} \right) \wedge (\beta_{2m} = 0),
\]
\[
\sum_{t=0}^{2m-2} \alpha_{2n-2t} \leftarrow (m \leq n) \wedge \left(\forall k \in \overline{1,m-1} \Rightarrow \beta_{2k} = \frac{a(2k) a(2k-1) = 1}{a(2k) a(2k-1) = 1} \right)
\]

\[
\sum_{t=0}^{2n} \gamma_{2n-2t} \oplus s_1(0) \leftarrow \left(\forall k \in \overline{1,n} \Rightarrow \delta_{2k} = a(2k) a(2k-1) = 1 \right)
\]
\[
\sum_{t=0}^{2m-2} \gamma_{2n-2t} \leftarrow (m \leq n) \wedge \left(\forall k \in \overline{1,m-1} \Rightarrow \delta_{2k} = a(2k) a(2k-1) = 1 \right) \wedge (\delta_{2m} = 0),
\]

где при \(n \geq 0 \) параметры линейной рекуррекции заданы последовательностью входных сигналов:

\[
\alpha_{n+1} := a(n+1), \quad \beta_{n+1} := a(n+1) a(n), \quad \gamma_{n+1} := a(n+1) a(n), \quad \delta_{n+1} := a(n+1) a(n).
\]

Для СМО с недетерминированной диспетчеризацией и стохастической выработкой сигналов на освобождение приборов получены явные уравнения состояния системы:

\[
\sum_{t=0}^{n} \alpha_{n-t} \oplus s_1(0) \leftarrow \left(\forall k \in \overline{0,n} \Rightarrow \beta_k = a_2(k) = 1 \right)
\]
\[
\sum_{t=0}^{m-1} \alpha_{n-t} \leftarrow (m \leq n) \wedge \left(\forall k \in \overline{0,m-1} \Rightarrow \beta_k = a_2(k) = 1 \right) \wedge \left(\beta_n = a_2(m) = 0 \right),
\]
\[s_2(n+1) = \begin{cases}
\sum_{t=0}^{n} \gamma_{n-t} \oplus s_2(0) \leftarrow \left(\forall k \in 0, n \Rightarrow \delta_k = a_2(k) = 1 \right), \\
\sum_{t=0}^{m-1} \gamma_{n-t} \leftarrow (m \leq n) \land \left(\forall k \in 0, m-1 \Rightarrow \delta_k = 1 \right) \land \\
\delta_m = a_2(m) = 0,
\end{cases} \]

где

\[
\alpha_n := a_1(n)a_2(n), \quad \beta_n := a_2(n), \quad \gamma_n := a_1(n)a_2(n), \quad \delta_n := a_2(n).
\]

Для СМО с недетерминированной диспетчеризацией и детерминированной выработкой сигналов на освобождение явные уравнения состояния записываются в виде:

\[s_1(n+1) = \begin{cases}
\sum_{t=0}^{n} \alpha_{n-t} \oplus s_1(0) \leftarrow \left(\forall k \in 0, n \Rightarrow \beta_k = a_2(k) \left[a_1(k) \oplus a_1(k) \times 2(k) \right] = 1 \right), \\
\sum_{t=0}^{m-1} \alpha_{n-t} \leftarrow (m \leq n) \land \left(\forall k \in 0, m-1 \Rightarrow \beta_k = 1 \right) \land \\
\beta_m = 0
\end{cases} \]

\[s_2(n+1) = \begin{cases}
\sum_{t=0}^{n} \gamma_{n-t} \oplus s_2(0) \leftarrow \left(\forall k \in 0, n \Rightarrow \delta_k = a_1(k)a_2(k) = 1 \right), \\
\sum_{t=0}^{m-1} \gamma_{n-t} \leftarrow (m \leq n) \land \left(\forall k \in 0, m-1 \Rightarrow \delta_k = 1 \right) \land \delta_m = 0.
\end{cases} \]

где

\[
\alpha_n := a_1(n)a_2(n), \quad \beta_n := a_2(n), \quad \gamma_n := a_1(n)a_2(n), \quad \delta_n := a_2(n).
\]

Статистическое моделирование СМО, представленной в виде конечного автомата, означает в первую очередь моделирование потоков сигналов 0 на освобождение заявки прибором и 1 на поступление новой заявки в систему. Под входным сигналом понимается в данном случае эмпирический числовой ряд \([T_1, T_2, \ldots T_i, \ldots T_k]\), где \(T_i\) – интервал времени между \(i\)-той и \(i-1\)-й по счету буквой 1 или 0. При этом мы сталкиваемся с проблемой, как на основе ограниченных серий наблюдений получить требуемое количество искусственных реализаций. Традиционно при статистическом моделировании учитывается лишь закон распределения интервалов времени между соответствующими сигналами. К такому ряду можно применять методы цифровой обработки сигналов, и получить требуемое количество искусственных реализаций входного сигнала с сохранением структуры эмпирического временного ряда. Предлагаемая методика включает в себя выделение циклов, характерных для входящего потока исследуемой системы, на ос-
нове оценки спектральной плотности мощности сигнала методом максимальной
энтропии; выделение низкочастотных составляющих сигнала (например, с помо-
щью фильтров Чебышева II рода); расчет спектра дисперсий случайной компо-
ненты входного сигнала; создание требуемого числа искусственных реализаций
сигнала с сохранением детерминированной составляющей эмпирического сигнала
и спектра дисперсий его случайной составляющей.

В третьей главе описан комплекс программ статистического моделирования
процессов массового обслуживания при неоднородных приборах и раздельных
очередях, а также автоматического построения графа состояний данной СМО.

Подробно описан алгоритм разработанного программного комплекса и приве-
дены примеры результатов его работы. Программы зарегистрированы в реестре
программ для ЭВМ Федеральной службы по интеллектуальной собственности
(Роспатент).

Программа автоматического построения графа состояний СМО с неоднород-
ными приборами и раздельными очередями, созданная на основе разработанной
нотификации, применима как к СМО со случаем выбором прибора, так и к
системам с детерминированным протоколом диспетчеризации поступающих зая-
вок. Программа решает следующие задачи: построение списка допустимых со-
стояний СМО; расчет и визуализация матрицы смежности вершин орграфа со-
стояний СМО; расчет координат вершин для наиболее эффективной визуализации
ограничения состояний СМО; визуализация орграфа состояний СМО. Разработанная
программа применима для произвольного числа приборов и произвольных конеч-
ных емкостей накопителей и эффективно визуализирует орграф СМО большой
размерности.

Программный комплекс статистического моделирования процессов массово-
го обслуживания при неоднородных приборах и раздельных очередях, разрабо-
таный средствами Matlab, позволяет учитывать такие характеристики СМО, как
закон распределения интервалов времени между появлениями входящих заявок и
его параметры; интенсивности потоков событий СМО, и применим для произ-
вольного конечного числа приборов и произвольных конечных емкостей их нако-
пителей. С его помощью можно получить набор состояний исследуемой СМО на
каждом такте в течение всего времени работы имитационной модели, задаваемой
пользователем, и на основе этих данных вычислять значения следующих характе-
ристик системы: динамику загруженности каждого прибора; динамику вероятно-
сти отказов; динамику вероятности простоя.

Средняя загруженность j-того прибора рассчитывается как математическое
ожидание количества заявок, обслуживаемых j-тым прибором за данный проме-
Нажмите на изображение страницы документа, чтобы увидеть текст, который вы хотите прочитать.
моделирования процессов массового обслуживания при неоднородных приборах и раздельных очередях с использованием уравнений Колмогорова и статистического моделирования с использованием разработанного комплекса программ. Показано, что результаты статистического моделирования после выхода системы на стационарный режим соответствуют предельным вероятностям состояний, полученных из решения соответствующей системы уравнений Колмогорова. На рис. 3 представлена динамика вероятности отказа трехканальной СМО с различными каналами в стационарном режиме. Показано, что разница между средним значением вероятности отказа, вычисленным в ходе статистического моделирования, и предельной вероятностью отказа, полученной из численного решения уравнений Колмогорова, составляет не более 14%.

Классическую одноканальную СМО с простейшими потоками можно рассматривать как частный случай СМО с неоднородными приборами и раздельными очередями. На рис. 4 приведена динамика вероятности отказа одноканальной СМО без очереди, когда работа СМО вышла на стационарный режим. Отмечено, что разница между средним значением вероятности отказа СМО согласно результатам статистического моделирования и предельной вероятностью отказа, вычисленной с помощью уравнений Колмогорова, составило менее 2%.

Рисунок 3 – Вероятность отказа СМО сигнатуры $T(0,15;0,05;0,03;0,00;0)$

Рисунок 4 – Вероятность отказа СМО сигнатуры $T(0,15;0)$

Адекватность модели также подтверждена результатами внедрения диссертационного исследования в рамках проекта по разработке АСУ диспетчеризации порожних вагонов по станциям налива Бензино-Черниковского узла. Цель, поставленная в ходе внедрения, – спрогнозировать загруженность каждой станции Бензино-Черниковского узла и вероятность отказа на различных временных интервалах. В соответствии с поставленной целью были решены следующие задачи: проведено статистическое моделирование входящего потока, предложен четкий протокол диспетчеризации порожних вагонов, а также проведено тестирование протокола диспетчеризации на стохастических реализациях входящего потока. На основе результатов статистического моделирования работы узла спрогнозирована
динамика нагрузки на каждую станцию, а также динамика вероятности отказа узла в целом. Это позволило подготовить проект изменений в регламент распределения порожних вагонов по станциям налива, которые согласно прогнозу обеспечат снижение среднего времени ожидания вагоном обслуживания на 8%.

В заключении перечислены основные результаты и выводы, полученные при выполнении диссертационной работы.

1. Разработана математическая модель массового обслуживания при неоднородных приборах и раздельных очередях в виде конечного автомата, область применения которой, в отличие от существующих подходов, не ограничивается системами с упорядоченным входом, и позволяющая исследовать СМО при различных законах распределения интервалов времени между событиями ее потоков.

2. Предложен метод получения явных уравнений состояния СМО, представленной конечным автоматом, из рекурсивных, что позволяет определить состояние системы в произвольный момент времени $n+i$ по последовательности входных сигналов и ее состоянию в произвольный момент времени n.

3. Разработан численный метод статистического моделирования потоков СМО, который позволяет на основе имеющейся серии наблюдений получать требуемое количество ее статистических реализаций с сохранением структуры стохастической компоненты.

4. Разработанные модели и методы реализованы в комплексе программ, позволяющем проводить статистическое моделирование процессов массового обслуживания при неоднородных приборах и раздельных очередях.

5. Разработан и программно реализован алгоритм, позволяющий автоматически визуализировать орграф состояний СМО с неоднородными приборами и раздельными очередями, при этом визуализация эффективна для случаев трех и более приборов.

6. Реализованные алгоритмы и комплекс программ статистического моделирования внедрены в рамках проекта по созданию АСУ диспетчеризацией порожних вагонов в целях оптимизации работы станций налива.

Список публикаций

В изданиях из перечения ВАК:

2. Букаренко, М.Б. Система массового обслуживания с различными каналами как конечный автомат [Текст] / М.Б. Букаренко, А.П. Котенко // Вестник Са-

Патенты и авторские свидетельства:

5. Программа автоматического построения графа состояний системы массового обслуживания с раздельными накопителями и неоднородными приборами [Текст]: Свидетельство о государственной регистрации программы для ЭВМ № 2013616230 Российская Федерация, Федеральная служба по интеллектуальной собственности (РОСПАТЕНТ) / Букаренко М.Б., Котенко А.П.; заявители и правообладатели Букаренко М.Б., Котенко А.П.; заявл. 19.03.2013; рег. в реестре программ для ЭВМ 02.07.2013.

6. Программа имитационного моделирования работы системы массового обслуживания с раздельными накопителями и неоднородными приборами [Текст]: Свидетельство о государственной регистрации программы для ЭВМ № 2013616460 Российская Федерация, Федеральная служба по интеллектуальной собственности (РОСПАТЕНТ) / Букаренко М.Б., Котенко А.П.; заявители и правообладатели Букаренко М.Б., Котенко А.П.; заявл. 19.03.2013; рег. в реестре программ для ЭВМ 09.07.2013.

В других изданиях:

9. Букаренко, М.Б. Аналитическое описание систем массового обслуживания с использованием колец вычетов в управлении организационно-экономическими системами [Текст] / М.Б. Букаренко, А.П. Котенко // Сб. ст. «Управление органи-

17. Букаренко, М.Б. Комплекс программ для автоматического построения графа состояний системы массового обслуживания с раздельными очередями и

Автореферат отпечатан с разрешения диссертационного совета Д 212.217.03
ФГБОУ ВПО «Самарский государственный технический университет»
(протокол № 16 от «22» октября 2013 г.)

Отпечатано на ризографе. Усл.печ. л.1,0
Тираж 100 экз. Заказ № 964

ФГБОУ ВПО «СамГТУ»
Отдел типографии и оперативной печати
443100, г. Самара, ул. Молодогвардейская, 244