ТЕОРИЯ ФУНКЦИЙ
КОМПЛЕКСНОЙ ПЕРЕМЕННОЙ
И ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ

ЗАДАЧИ И УПРАЖНЕНИЯ

Самара
Самарский государственный технический университет
2006
УДК 517.53 (075.8)

Теория функций комплексной переменной и операционное исчисление: задачи и упражнения / Сост. О. Е. Курилова, Г. А. Павлова, Н. Н. Попов. – Самара; Самар. гос. техн. ун-т, 2006. 32 с.

Содержит задачи и упражнения по всем разделам курса «Теория функций комплексной переменной и операционное исчисление», включаемым в программу технических вузов. Пособие предназначено для студентов факультетов МиАТ и ФТ.

Библиогр.: 8 назв.

Печатается по решению редакционно-издательского совета СамГТУ
Комплексные числа и действия над ними

Часть А

1. Данные комплексные числа изобразить на комплексной плоскости:
 1) $1+i$, 2) $-2+3i$, 3) $-4i$, 4) $-3-2i$, 5) 2.

2. Найти $z_1 + z_2$, $z_1 - z_2$, $z_1 z_2$, $\frac{z_1}{z_2}$, если
 1) $z_1=1-2i, z_2=2+3i$; 2) $z_1 = 3-4i, z_2 = 5+2i$.

3. Найти действительные числа x и y из уравнений
 1) $(-3y + 0.5xi) - (2x - 5yi) = 1 + 4i$; 2) $2x + 2yi + 3y - 3xi = 9 - 7i$;
 3) $(x + 1.5y) + (2x + 3y)i = 13i$; 4) $(1 + i)x + (1 - i)y = 3 - i$.

4. Представить в тригонометрической форме следующие комплексные числа:
 1) $1+i$; 2) $2i$; 3) -4; 4) $-\sqrt{2} + i\sqrt{2}$.

5. Найти действительную и мнимую части следующих комплексных чисел:
 1) $\frac{\sqrt{3} - i}{\sqrt{3} + i}$; 2) $\frac{2+i}{3-5i} + \frac{i}{i-1}$; 3) $\frac{2(\cos 107^0 + i\sin 107^0)}{5(\cos 47^0 + i\sin 47^0)}$;
 4) $\left(\frac{1-i}{1+i}\right)^3$; 5) $\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)^4$; 6) $(1+i)^8 \left(1-i\sqrt{3}\right)^6$.

6. Найти модуль и главное значение аргумента следующих комплексных чисел:
 1) $\frac{2}{1-3i}$; 2) $-\cos \frac{\pi}{6} + i\sin \frac{\pi}{6}$;
 3) $\cos \frac{\pi}{4} - i\sin \frac{\pi}{4}$; 4) $w = z^2 + z$, где $|z| = 1$.

7. Найти все значения корня:
 1) $\sqrt[3]{3}$; 2) $\sqrt[3]{\cos \frac{\pi}{3} - i\sin \frac{\pi}{3}}$;
 3) $\sqrt[4]{-i}$; 4) $\sqrt[3]{2\sqrt{3} + 2i}$.
8. Решить уравнения относительно z:
1) $z^2 = i$; 2) $z^2 - 2z + 2 = 0$;
3) $z^2 + (5 - 2i)z + 5(1 - i) = 0$; 4) $z^2 + (2i - 3)z + 5 - i = 0$;
5) $z^4 + i + 1 = 0$; 6) $iz^3 - \sqrt{3} + i = 0$.

9. Построить на комплексной плоскости линии, точки которых удовлетворяют уравнениям:
1) $|z| = 3$; 2) $|z + 2 - i| = 1$;
3) Re $z = 2$; 4) Im $z = 1$;
5) $|z - 2i| + |z + 2i| = 2$; 6) $Re\ z = Im\ (z^2 + z)$.

10. Построить на комплексной плоскости области, заданные условиями
1) $|z - 3 + i| < 2$; 2) Im $z > -2$;
3) $\frac{\pi}{6} \leq \text{arg} z \leq \frac{3\pi}{4}$; 4) $|z| > 2 + \text{Re} z$;
5) $2|z| > |1 + z^2|$; 6) $\left|\frac{z - 2i}{z + 2i}\right| > \sqrt{2}$.

Часть Б

11. Найти действительные числа x и y из уравнений
1) $(2 + 3i)x + (2 - 3i)(x + y) = 7 - 8i$; 2) $(2x - 3yi)(2x + 3yi) + xi = 97 + 2i$.

12. Представить в тригонометрической форме следующие комплексные числа:
1) $3 - i\sqrt{3}$; 2) $-4i$; 3) $\frac{\sqrt{3} - i}{2}$; 4) $-4 + 3i$.

13. Найти действительную и мнимую части следующих комплексных чисел:
1) $\frac{2 - 3i}{4 + i} - \frac{5 - 2i}{4 - i}$; 2) $\cos 130^0 + i \sin 130^0$;
$\cos 40^0 + i \sin 40^0$;
3) $w = (1 + i)^4 + (1 - i)^6$; 4) $\frac{\left(\sqrt{3} - 3i\right)^6}{(-2 + 2i)^4}$.
14. Найти модуль и главное значение аргумента следующих комплексных чисел:

1) \(w = \left(1 + i\sqrt{3}\right)^3 \); 2) \(w = \left(\frac{4}{-1 + i\sqrt{3}}\right)^{12} \).

15. Найти все значения корня:

1) \(3\sqrt{i} \); 2) \(\sqrt{2 + i\sqrt{2}} \);
3) \(5\sqrt{-1} \); 4) \(3\sqrt{-1 + i\sqrt{3}} \).

16. Решить уравнения относительно \(z \):

1) \(z^2 + 10z + 50 = 0 \); 2) \(z^2 + 4iz + 12 = 0 \);
3) \((1 - 3i)z^2 = 2 - i \); 4) \(8z^3 + 27 = 0 \);
5) \(z^4 + 1 = 0 \); 6) \(z^4 + \sqrt{3} - i = 0 \).

17. Построить на комплексной плоскости линии, точки которых удовлетворяют уравнениям:

1) \(\text{Re} \ z^2 = 2 \); 2) \(|z + 2| = |1 + 2\bar{z}| \).

18. Построить на комплексной плоскости области, заданные условиями:

1) \(0 < \text{Im} \ z \leq \sqrt{3} \); 2) \(1 < |z + 1 - 2i| < 2 \);
3) \(\text{Im} \ \frac{1}{z} > \frac{1}{2} \); 4) \(\frac{1}{4} < \text{Re} \ \frac{1}{\bar{z}} + \text{Im} \ \frac{1}{z} < \frac{1}{2} \).

Элементарные функции комплексной переменной

Часть А

19. Дана функция \(w = 2z^2 - z \). Найти значение функции при:

1) \(z = 1 - i \); 2) \(z = 1 + 2i \); 3) \(z = i \).

20. Дана функция \(f(z) = \frac{1}{x - yi} \), где \(z = x + yi \). Найти

1) \(f(1 + i) \); 2) \(f(2 - 3i) \); 3) \(f(-1 + 2i) \).

21. Определить действительную и мнимую части следующих функций:

1) \(f(z) = 2iz^2 - z \); 2) \(f(z) = \frac{1}{iz} \); 3) \(f(z) = \frac{z + 1}{z - 2} \).
22. Найти значение функции \(w = e^{-\frac{z}{2}} \) при следующих значениях \(z \):
 1) \(\frac{\pi}{2} i \); 2) \(\pi (1 + i) \); 3) \(1 + 2\pi i \).

23. Найти логарифмы следующих чисел:
 1) \(2 \); 2) \(-3 \); 3) \(i \); 4) \(-1 - i \); 5) \(-\sqrt{3} + 3i \).

24. Найти действительные и мнимые части следующих комплексных чисел:
 1) \(\cos(3 - i) \); 2) \(\sin 2i \); 3) \(\tan\left(\frac{\pi}{4} - i \ln 2\right) \).

25. Вычислить:
 1) \(i \); 2) \(1 - i \); 3) \(\left(\frac{1 - i}{\sqrt{2}}\right)^i \); 4) \(\arcsin \frac{1}{2} \); 5) \(\arccos 2 \).

26. Найти модуль и аргумент следующих комплексных чисел:
 1) \(3^{2+i} \); 2) \(i\pi e^{i\pi} \); 3) \(sh\frac{i\pi}{2} \); 4) \(ch^2 i \ln 3 \).

27. Решить следующие уравнения:
 1) \(e^{2z} + 5e^z - 6 = 0 \); 2) \(e^{iz} + 1 - \sqrt{3} = 0 \); 3) \(\sin iz = \frac{i\pi}{2} \).

Часть Б

28. Дана функция \(f(z) = x^2 - y^2 i \), где \(z = x + yi \). Найти:
 1) \(f(1 - 2i) \); 2) \(f(2 + 3i) \); 3) \(f(3 - 4i) \).

29. Вычислить:
 1) \(e^{\ln 3 + i\frac{\pi}{2}} \); 2) \(\cos i \); 3) \(\cos\left(\frac{\pi}{2} + \ln 2\right) \); 4) \(\chi \frac{i\pi}{2} \); 5) \(\tan(2 - i) \).

30. Найти:
 1) \(\ln\left(\frac{3}{\sqrt{2}} - \frac{3}{\sqrt{2}} i\right) \); 2) \(4^{-i} \); 3) \((1 - i)^{1+i} \); 4) \(\arcsin(\sqrt{2} - i) \).

31. Найти действительные и мнимые части следующих комплексных чисел:
 1) \(\sin\left(\frac{\pi}{2} + i \ln 2\right) \); 2) \((-1)^{\sqrt{2}} \); 3) \(\csc i\pi \); 4) \((2i)^i \).

32. Решить следующие уравнения:
 1) \(2 \cos z - 3 = 0 \); 2) \(shiz = -2i \); 3) \(e^{-2iz} = -\sqrt{3} + i \).
Аналитические функции комплексной переменной.
Условия Коши-Римана.

Часть А

33. Найти все точки \(z \in C \), в которых дифференцируемы функции:

1) \(w = \text{Re} \, z \);
2) \(w = z \text{Re} \, z \);
3) \(w = x^2 + iy^2 \);
4) \(w = \frac{1}{z} \);
5) \(w = z^2 \);
6) \(w = \overline{z} \text{Im} \, z \).

34. Найти постоянные \(a, b, c \) при которых функция \(f(z) \) будет аналитической:

1) \(f(z) = x + ay + ibx + cy \);
2) \(f(z) = \cos(chy + ash) + i \sin x(chy + bshy) \).

35. Найти область, в которой функция \(f(z) = x^2 - y^2 + 2i|xy| \) является аналитической.

36. Восстановить аналитическую в окрестности \(z_0 = 0 \) функцию \(f(z) \) по известной действительной части \(u(x, y) = x^3 - 3xy^2 + 2 \) и значению \(f(0) = 2 + i \).

37. Найти аналитическую функцию \(f(z) \) по известной ее действительной части \(u(x, y) = -2xy + 2y \).

38. Восстановить аналитическую в окрестности \(z_0 = 0 \) функцию \(f(z) \) по известной мнимой части \(v(x, y) = e^x \sin y + 2xy + 5y \) и значению \(f(0) = 10 \).

39. Найти аналитическую функцию \(f(z) \) по известной ее мнимой части \(v(x, y) = x - x^2 + y^2 - 1 \) и значению \(f(0) = i \).

40. Найти коэффициент растяжения \(k \) и угол поворота \(\theta \) для заданных отображений \(w = f(z) \) в указанных точках:

1) \(w = z^2 \), \(z_0 = \sqrt{2}(1 + i) \);
2) \(w = z^2 + z \), \(z_0 = -1 + 2i \).

Часть Б

41. Найти все точки \(z \in C \), в которых дифференцируемы функции:

1) \(w = |z|^2 + 2z \);
2) \(w = 2xy - i(x^2 - y^2) \);
3) \(w = z^2 \overline{z} \);
4) \(w = z \overline{z}^2 \).
42. Доказать аналитичность всюду в C и найти производную следующих функций:

1) $w = z^3$;
2) $w = \frac{1}{2} \left(z + \frac{1}{z}\right)$; ($z \neq 0$).

43. Восстановить аналитическую в окрестности $z_0 = 1$ функцию $f(z)$ по известной действительной части $u(x, y) = x^2 - y^2 + 2x$ и значению $f(1) = 2i - 1$.

44. Восстановить аналитическую функцию $f(z)$ по ее действительной части $u(x, y) = e^x \cos y + x^2 - y^2 + 3x$ и значению $f(0) = 0$.

45. Найти аналитическую функцию $f(z) = u + iv$ по заданной мнимой части $v = 3 + x^2 - y^2 - \frac{y}{2(x^2 + y^2)}$.

46. Найти коэффициент растяжения k и угол поворота θ для заданных отображений $w = f(z)$ в указанных точках:

1) $w = z^3$, $z_0 = 1 + i$;
2) $w = iz^2 - 2z$, $z_0 = -2 + i$.

Интегрирование функций комплексной переменной

Часть A

47. Вычислить интеграл $\int_L (z + 2\overline{z})dz$, где L:

1) отрезок прямой от $z_1 = 0$ до $z_2 = 1 - i$;
2) дуга параболы $y = x^2$ с концами в точках $z_1 = 0$, $z_2 = 1 + i$.

3) дуга окружности $|z| = 2$; $-\frac{\pi}{2} \leq \arg z \leq \frac{\pi}{2}$;
4) окружность $|z - 1| = 2$.

48. Вычислить интеграл $\int_L z \Re z dz$, где L – отрезок прямой от точки $z_1 = 0$ до точки $z_2 = 1 - 2i$.
49. Вычислить интеграл \(\int_{L} e^{-z} dz \), где L:
1) ломаная, соединяющая точки \(z_1 = 0; \ z_2 = 2; \ z_3 = 2 - i \);
2) отрезок прямой от \(z_1 = 0 \) до \(z_2 = 2 - i \).

50. Вычислить интеграл \(\int_{i}^{1+2i} \frac{dz}{(z-2i)^2} \), если путь интегрирования не проходит через точку \(z = 2i \).

51. Вычислить интеграл \(\int_{0}^{i} ye^{-\frac{1}{2} x} dz \).

52. Вычислить интегралы (обход контуров - против часовой стрелки):
1) \(\oint_{|z|=1} \frac{z^2}{z-2i} dz \); 2) \(\oint_{|z|=4} \frac{z^2}{z-2i} dz \);
3) \(\oint_{|z|=2} \frac{z+2}{z^2+2z-3} dz \); 4) \(\oint_{|z+1|=2} \frac{2z+1-i}{(z-3)(z+1)} dz \);
5) \(\oint_{L} e^{z} \frac{dz}{z^2-9} \), где L: а) \(|z-3|=2 \), б) \(|z+3|=2 \), в) \(|z|=1 \), г) \(|z|=4 \);
6) \(\oint_{|z-2|=2} \frac{z^3-3z}{(z-2i)^3} dz \); 7) \(\oint_{|z|=2} \frac{z \cos z}{z^2-\frac{\pi}{3}} dz \);
8) \(\oint_{|z+2i|=3} \frac{e^{z}}{z^2+2iz} dz \); 9) \(\oint_{|z-2|=2} \frac{\sin \pi z}{(z^2-4)^2} dz \);
10) \(\oint_{|z|=2} \frac{chz}{(z-i)^2(z+1)} dz \).

Часть Б

53. Вычислить интеграл \(\int_{L} z \text{Im} dz \), где L – отрезок прямой от точки \(z_1 = -i \) до точки \(z_2 = 1+i \).
54. Вычислить интеграл \(\int_L f(z)dz \), где \(f(z) = (y - 1) + x^2i \), \(L \) – отрезок прямой между точками \(z_1 = 1 \), \(z_2 = 2 - i \).

55. Вычислить интеграл \(\int_L z\bar{z}dz \), где \(L \) - дуга параболы \(y = \sqrt{x} \) с концами в точках \(z_1 = 1 \), \(z_2 = -1 + i \).

56. Вычислить интеграл \(\int_0^{\pi i} (z-i)e^{-2z}dz \).

57. Вычислить интегралы (обход контуров - против часовой стрелки):

1) \(\oint_{|z+1|=2} \frac{z^2dz}{z + 2 - i} \); 2) \(\oint_{|z|=1} \frac{dz}{z^3 + 4z} \);

3) \(\oint_{|z-1|=1.5} \frac{z+1}{z^2 - iz + 2}dz \); 4) \(\oint_{|z-2|=3} \frac{e^z}{z^2(z+2)}dz \);

5) \(\oint_{|z|=2} \frac{zdz}{(z-1)(z+3)^3} \); 6) \(\oint_{|z|=2} \frac{chizdz}{z^2 + 4z + 3} \);

7) \(\oint_{|z+1|=4} \frac{\cos z}{z^2 - \pi^2}dz \); 8) \(\oint_{|z-a|=1} \frac{e^z z}{(z-a)^3}dz \).

Ряды Тейлора и Лорана

Часть А

58. Разложить в ряд в окрестности точки \(z=0 \) следующие функции:

1) \(f(z) = z^3 e^z \); 2) \(f(z) = (1 - z + 2z^2)\sin \frac{1}{z^2} \).

59. Разложить в ряд функцию \(f(z) = \frac{1}{z - 2} \) в областях:

1) \(|z| < 2 \), \(z=0 \); 2) \(2 < |z| < \infty \), \(z=\infty \).

60. Разложить в ряд по степеням \((z-1) \) функцию \(f(z) = \frac{1}{z - 2} \) в областях:

1) \(|z-1| < 1 \); 2) \(1 < |z-1| < \infty \).
61. Разложить в ряд по степеням \(z \) функцию \(f(z) = \frac{1}{(z-2)^2} \) в круге \(|z|<1\).

62. Разложить в ряд по степеням \(z \) функцию \(f(z) = \frac{1}{z(z-2)} \) в кольце \(0 <|z| < 2 \).

63. Разложить в ряд по степеням \(z+1 \) функцию \(f(z) = \frac{z-1}{z(z+2)} \) в области \(1 <|z+1| < \infty \).

64. Разложить в ряд по степеням \(z \) следующие функции:
 1) \(f(z) = \cos 2z \);
 2) \(f(z) = \sin(2z-1) \).

65. Разложить в ряд по степеням \(z-a \) следующие функции:
 1) \(f(z) = e^{3z-2}, a=1 \);
 2) \(f(z) = \sin(z+i), a=i \);
 3) \(f(z) = z \cos 2z; a=1 \);
 4) \(f(z) = z^5 - z^3 + 2z - 3, a = 2 \).

Часть Б

66. Разложить в ряд Тейлора по степеням \(z \) функцию \(f(z) = \frac{z}{z^2+i} \), используя готовое разложение.

67. Разложить в ряд Тейлора по степеням \(z \) функцию \(f(z) = \frac{1}{4-z^2} \), используя готовое разложение.

68. Разложить в ряд Лорана в области \(0 <|z-a| < \infty \) следующие функции:
 1) \(f(z) = e^{\frac{1}{z^2}}, a=0 \);
 2) \(f(z) = (z+1)\sin\frac{1}{z+1}, a=-1 \);
 3) \(f(z) = (z+i)^2 \cos\frac{1}{z+i}, a=-i \).

69. Разложить в ряд по степеням \(z \) функцию \(f(z) = \frac{1}{z(z+2)} \) в области \(|z|<1\).

70. Разложить в ряд по степеням \(z \) функцию \(f(z) = \frac{z + 1}{z^2 - 3z + 2} \); в области \(2 < |z| < \infty \).

71. Разложить в ряд по степеням \(z-2 \) функцию \(f(z) = \frac{1}{(z + 1)(z - 2)^2} \) в области \(|z - 1| < 3 \).

Изолированные особые точки аналитической функции комплексной переменной и их вычеты

Часть А

72. Найти нули функции и указать их порядок:
 1) \(f(z) = \left(z^3 - 1 \right)^2 \);
 2) \(f(z) = \sin 2z \);
 3) \(f(z) = \ctg^2 z \);
 4) \(f(z) = \left(z^2 + 4z + 4 \right)^3 \).

73. Найти особые точки, выяснить их тип и вычислить вычеты относительно особых точек следующих функций:

\[
\begin{array}{ll}
1) f(z) = \frac{z}{(z+1)(z-3)} & 2) f(z) = \frac{z^2 + 1}{z(1-z)}; \\
3) f(z) = \frac{z+1}{z^2} & 4) f(z) = \frac{\cos z}{z - \frac{\pi}{2}}; \\
5) f(z) = \frac{1}{z^3 + z} & 6) f(z) = \frac{\sin 3z}{(z - \pi i)^3}; \\
7) f(z) = \frac{z^2}{e^z + 3} & 8) f(z) = e^{1-z}; \\
9) f(z) = \frac{z}{\sin z} & 10) f(z) = \frac{z + 2}{z^5 - z^3}; \\
11) f(z) = e^{-\frac{1}{z}} & 12) f(z) = \frac{z^2}{(z^2 + 1)^2}. \\
\end{array}
\]
Часть Б

74. Найти особые точки, выяснить их тип и вычислить вычеты относительно особых точек следующих функций:

1) \(f(z) = \frac{z + 4}{z^2 + 2z - 8} \); 2) \(f(z) = \frac{z - i}{(z + i)(z - 2i)} \);

3) \(f(z) = \frac{2z^2 + 1}{(z - 2)^3} \); 4) \(f(z) = \frac{2z + 5}{z^4 - 4z^2 + 4} \);

5) \(f(z) = \frac{z + 2}{(z^2 - 1)^2} \); 6) \(f(z) = \frac{\cos 2z}{\left(\frac{z - \pi}{4}\right)^2} \);

7) \(f(z) = \frac{\sin z}{z^2(z - \pi)} \); 8) \(f(z) = \sin \frac{1}{z} \).

Вычисление интегралов с помощью вычетов

Часть А

75. Вычислить следующие интегралы:

1) \(\int_{|z-i|=1.5} \frac{2z + i}{z(z - i)} \, dz \); 2) \(\int_{|z|=2} \frac{\cos z \, dz}{z^2 - 2z - 3} \);

3) \(\int_{|z|=1} \frac{z^2 - 3}{z(z + 2i)^2} \, dz \); 4) \(\int_{|z+2|=2} \frac{z}{(z + 1)^2} \, dz \);

5) \(\int_{|z|=3} \frac{\sin z}{(z - 2i)^3} \, dz \); 6) \(\int_{|z-1+i|=2} \frac{z^2 + z - 1}{z^2(z - 1)} \, dz \).

76. Вычислить интеграл \(\oint_L \frac{z \, dz}{\cos z} \), где \(L \) – прямоугольник с вершинами в точках: \(z_1 = -i \); \(z_2 = 2 - i \); \(z_3 = 2 + i \); \(z_4 = i \).

77. Вычислить следующие интегралы:

1) \(\oint_{|z|=2} \frac{2z + i}{z^3 + z^2} \, dz \); 2) \(\oint_{|z|=1} \frac{1}{z^3} \, e^z \, dz \).
3) \(\oint_{|z-i|=1.5} \frac{\sin \frac{i\pi z}{2}}{z(z^2 + 1)} \, dz \);
4) \(\oint_{|z|=2} \frac{e^{-\frac{z+\pi i}{z}}}{z} \, dz \);
5) \(\oint_{|z|=5} \frac{z \, dz}{\sin z(1 - \cos z)} \).

78. Вычислить следующие несобственные интегралы:

1) \(\int_{-\infty}^{\infty} \frac{dx}{(x^2 + 25)^2} \).
2) \(\int_{-\infty}^{\infty} \frac{x^2 \, dx}{(x^2 + 16)^2} \).
3) \(\int_{-\infty}^{\infty} \frac{dx}{x^2 - 2x + 10} \).
4) \(\int_{-\infty}^{\infty} \frac{x \, dx}{(x^2 + 2x + 2)^2} \).

Часть Б

79. Вычислить следующие интегралы:

1) \(\oint_{|z+2|=4} \frac{(z + 1) \, dz}{z^2 + 3z - 4} \);
2) \(\oint_{|z|=2} \frac{z^2 - 2}{(z + i)(z - 3)^2} \, dz \);
3) \(\oint_{|z-2|=1} \frac{z - i}{(z + 1)(z - 2i)^2} \, dz \);
4) \(\oint_{|z+2|=2} \frac{z \, dz}{(z + 2)^2(z - 3)^3} \);
5) \(\oint_{|z|=2} e^{\frac{z}{z^2}} \, dz \);
6) \(\oint_{|z-\pi|=2} \frac{\cos z \, dz}{z \left(z - \frac{\pi}{2} \right)^2} \);
7) \(\oint_{|z-i|=1} \frac{z + 1}{z^2 - iz + 2(z - i)} \, dz \).

80. Вычислить интеграл \(\oint_{L} \frac{e^{zi}}{\sin 2z} \, dz \); где L – ромб с вершинами в точках: \(z_1 = 2; \ z_2 = i; \ z_3 = -2; \ z_4 = -i \).

81. Вычислить интеграл \(\oint_{L} z \sin \frac{1}{z^2} \, dz \); где L – прямоугольник с вершинами в точках: \(z_1 = 1 + i; \ z_2 = -1 + i; \ z_3 = 1 - 2i; \ z_4 = -1 - 2i \).
82. Вычислить следующие несобственные интегралы:

1) \[\int_{-\infty}^{\infty} \frac{dx}{(x^2 + 1)^3}; \quad 2) \int_{-\infty}^{\infty} \frac{dx}{x^2 - 2x + 50}; \]

3) \[\int_{-\infty}^{\infty} \frac{x \, dx}{(x^2 + 4x + 13)^2}; \quad 4) \int_{0}^{\infty} \frac{x^2 + 1}{x^4 + 1} \, dx \]

Функция-оригинал. Нахождение изображений по заданному оригиналу

Часть А

83. Какие из данных функций являются оригиналами (первое свойство функции-оригинала считается выполненным):

1) \(\ln(t + 3) \); 2) \(\frac{1}{t^2 - 4} \); 3) \(\cos^2 t \); 4) \(e^{\sqrt{t^3}} \).

84. Найти изображение функций, используя определение преобразования Лапласа:

1) \(f(t) = t + 1 \); 2) \(f(t) = \begin{cases} 2 - t, & 0 < t \leq 2; \\ 0, & t > 2. \end{cases} \)

85. Пользуясь теоремой смещения, найти изображения функций:

1) \(f(t) = e^{3t} \sinh 2t \); 2) \(f(t) = e^{-2t} \cos^2 t \);

3) \(f(t) = e^{-0.5t} t^2 \); 4) \(f(t) = \text{sh} 2t \sin 4t \).

86. Пользуясь теоремой дифференцирования изображения, найти изображения функций:

1) \(f(t) = t \cosh 3t \); 2) \(f(t) = t \sinh t \);

3) \(f(t) = t^2 e^{2t} \); 4) \(f(t) = t^2 \sin 4t \).

87. Пользуясь теоремой интегрирования изображения, найти изображения функций:

1) \(f(t) = \frac{e^{-at} \sin t}{t} \); 2) \(f(t) = \frac{\sin^2 t}{t} \);

3) \(f(t) = \frac{e^{2t} - e^{4t}}{t} \).

88. Пользуясь теоремой запаздывания, найти изображения функций:

1) \(f(t - 4) = e^{t - 4} \); 2) \(f(t - \frac{\pi}{8}) = \sin \left(2t - \frac{\pi}{4} \right) \).
3) \(f(t-2.5) = ch(2t-5) \);
4) \(f\left(t-\frac{4}{3}\right) = sh(3t-4) \).

89. Пользуясь теоремой дифференцирования оригинала, найти изображения \(f'(t) \), если:

1) \(f(t) = \cos 2t + t \sin 2t \);
2) \(f(t) = \sin^2 t \);
3) \(f(t) = e^{-3t} \cos t \);
4) \(f(t) = t \sh 4t \).

90. Найти изображения дифференциальных выражений:

1) \(x''(t) + 4x'(t) + 2x(t) \), \(x(0) = 1, \ x'(0) = -2 \);
2) \(2x'''(t) - 3x''(t) + 1 \), \(x(0) = -1, \ x'(0) = 1, \ x''(0) = 0 \).

91. Пользуясь теоремой умножения изображения, найти изображения функций:

1) \(f(t) = \int_0^t \cos 2(t-\tau) \cosh d\tau \);
2) \(f(t) = \int_0^t (t-\tau)^2 \sin 3\tau d\tau \);
3) \(f(t) = \int_0^t e^{-2(t-\tau)} (1-2\tau) d\tau \).

92. Найти изображения функций, заданных графически:

Часть Б

93. Найти изображения функций:

1) \(f(t) = 2e^{-t} \cos 2t - 0.5 \sin 2t \);
2) \(f(t) = \cosh \cos 4t \);
3) \(f(t) = \frac{\sin 2t}{4} - \frac{t \cos 2t}{2} \);
4) \(f(t) = \frac{3}{2} t^3 e^{-2t} \);
5) \(f(t) = e^{-2t} \sin 4t \sin 3t \);
6) \(f(t) = te^{2t} \sin 3t \);
7) \(f(t) = t^2 \left(e^t - \sh \right) \cos 3t \);
8) \(f(t-2) = 0.5(t-2)e^{t-2} \);
9) \(f(t - 2) = e^{-2t} \cos 4(t - 2); \)
10) \(f(t) = \frac{sh^2 t}{t}; \)

11) \(f(t) = \frac{1 - e^{at}}{te^t}; \)
12) \(f(t) = \frac{\cos bt - \cos at}{t}; \)

13) \(f(t) = \int_{0}^{t} (t - \tau) \cos^2 \tau \, d\tau; \)
14) \(f(t) = \int_{0}^{t} sh(t - \tau) e^{-4\tau} \, d\tau. \)

94. Найти изображения функций, заданных графически:

1) 2)

Нахождение оригиналов по заданному изображению

Часть А

95. Найти оригиналы для заданных функций:

1) \(F(p) = \frac{p}{p^2 + 4} + \frac{2}{p^2 + 9}; \)
2) \(F(p) = \frac{p - 2}{p^2 - 4p + 13}; \)
3) \(F(p) = \frac{1}{p^2 - 4p + 20}; \)
4) \(F(p) = \frac{p - 1}{p^2 + 6p + 13}. \)

96. Используя теорему запаздывания, найти оригиналы для заданных функций:

1) \(F(p) = \frac{e^{-2p}}{p + 5}; \)
2) \(F(p) = \frac{e^{-3p}}{p^2 + 1}; \)
3) \(F(p) = \frac{e^{-p} p}{p^2 + 3p + 2}. \)

97. Используя разложение дробей на простейшие, найти оригиналы для заданных функций:

1) \(F(p) = \frac{p + 1}{p(p + 2)}; \)
2) \(F(p) = \frac{p^2 + 1}{p(p + 1)(p + 2)}; \)
3) $F(p) = \frac{1}{p^2(p+1)}$; \hspace{1cm} 4) $F(p) = \frac{p-3}{p^3 + 4p^2 + 4p}$

98. Найти оригиналы для изображений с помощью теории вычетов:

1) $F(p) = \frac{p+2}{(p+1)(p^2 + 2p - 3)}$; \hspace{1cm} 2) $F(p) = \frac{p^2 + 2}{(p-1)(p^2 + 4)}$

3) $F(p) = \frac{p+4}{p^3 - 4p^2 + 5p}$; \hspace{1cm} 4) $F(p) = \frac{2p-1}{(p-1)^2(p-2)}$

5) $F(p) = \frac{p}{(p+1)^2(p^2 + 4)}$; \hspace{1cm} 6) $F(p) = \frac{p^3 + 2p + 2}{p^3(p + 1)}$

Часть Б

99. Найти оригиналы для заданных изображений:

1) $F(p) = \frac{p}{p^2 - 9} + \frac{3}{p^2 - 16}$; \hspace{1cm} 2) $F(p) = \frac{2}{p^2 + 4p + 7}$

3) $F(p) = \frac{3p - 1}{p^2 - 4p + 3}$; \hspace{1cm} 4) $F(p) = \frac{4 - p - p^2}{p^3 - p^2}$

5) $F(p) = \frac{e^{-p}(p + 1)}{p^2 - 2p + 5}$; \hspace{1cm} 6) $F(p) = \frac{e^{-2p}p}{p^2 + 4p + 20}$

7) $F(p) = \frac{p - 1}{p^4 + 5p^2 + 4}$; \hspace{1cm} 8) $F(p) = \frac{p^2 + 1}{(p + 1)(p + 3)(p + 5)}$

9) $F(p) = \frac{2p - 3}{(p^2 + 4p + 3)(p^2 + 6p + 8)}$

10) $F(p) = \frac{p + 2}{p^3 + 6p^2 + 9p}$; \hspace{1cm} 11) $F(p) = \frac{2p^2 - p - 1}{p^3 + 2p^2 + 2p + 1}$

12) $F(p) = \frac{p}{(p - 1)^3(p + 1)^2}$.

16
100. Решить дифференциальные уравнения при заданных начальных условиях:
1) \(x'' - 3x' + 2x = 2e^{3t} \), \(x(0) = 1, \quad x'(0) = 3 \);
2) \(x'' - x' = 2(1-t) \), \(x(0) = 0, \quad x'(0) = 0 \);
3) \(x'' + 2x' + x = te^{-t} \), \(x(0) = -1, \quad x'(0) = 0 \);
4) \(x'' - 2x' + 2x = 2t \), \(x(0) = 0, \quad x'(0) = -1 \);
5) \(x'' + x' = t^3 + 6t \), \(x(0) = 0, \quad x'(0) = 0 \);
6) \(2x'' + 3x' = 2\sin t \), \(x(0) = 0, \quad x'(0) = -1 \);
7) \(x'' - 9x = sht \), \(x(0) = -1, \quad x'(0) = 3 \);
8) \(x'' - x' = \begin{cases} e^{-t}, & 0 < t < 1 \\ 0, & t \geq 1 \end{cases} \), \(x(0) = 0, \quad x'(0) = 0 \);
9) \(x'' - x'' = 10e^{2t} \), \(x(0) = 0, \quad x'(0) = 0, \quad x''(0) = 0 \);
10) \(x'' - 3x'' + 3x' - x = e^t \), \(x(0) = 1, \quad x'(0) = -1, \quad x''(0) = 1 \).

101. Решить систему дифференциальных уравнений при заданных начальных условиях:
1) \(\begin{cases} x' = x + 2y, \\ y' = 2x + y + 1; \end{cases} \) \(x(0) = 0, \quad y(0) = 5 \);
2) \(\begin{cases} x'' - y' = 0, \\ x - y'' = 2\sin t; \end{cases} \) \(x(0) = -1, \quad x'(0) = y(0) = y'(0) = -1 \);
3) \(\begin{cases} x' - x + y = 1,5t^2, \\ y' + 4x + 2y = 4t + 1; \end{cases} \) \(x(0) = 0, \quad y(0) = 0 \).

102. Решить интегральные уравнения типа свертки:
1) \(\int_0^t \cos(t - \tau)x(\tau)d\tau = sht \) ;
2) \(\int_0^t e^{-(t-\tau)}x(\tau)d\tau = \sin t \) ;
3) \(t - \int_0^t (t-\tau)x(\tau)d\tau = x(t) \) ;
4) \(\int_0^t sh(t-\tau)x(\tau)d\tau = 1 - \cos t \) ;
5) \(\int_0^t ch(t-\tau)x(\tau)d\tau = cht - \cos t \) ;
Часть Б

103. Решить дифференциальные уравнения при заданных начальных условиях:

1) \(x'' + x' - 2x = e^{-t} \), \(x(0) = 0 \), \(x'(0) = 1 \);
2) \(x'' + 4x' + 4x = t^3 e^{-2t} \), \(x(0) = 1 \), \(x'(0) = 2 \);
3) \(x'' - 2x' = e^t (t^2 + t - 3) \), \(x(0) = 2 \), \(x'(0) = 2 \);
4) \(x'' + 2x' + 2x = 2e^{-t} \sin t \), \(x(0) = 1 \), \(x'(0) = 1 \);
5) \(x'' + x' = \sin t - 2e^{-t} \), \(x(0) = 0 \), \(x'(0) = 0 \);
6) \(x'' - x' = 3(2 - t^2) \), \(x(0) = x'(0) = x''(0) = 1 \);
7) \(x'' + 2x + x' = \begin{cases} 1, & 0 < t < 2 \\ 3, & t \geq 2 \end{cases} \), \(x(0) = 0 \), \(x'(0) = 0 \);

104. Решить систему дифференциальных уравнений при заданных начальных условиях:

1) \(\begin{cases} x' - y' - 2x + 2y = 1 - 2t, \\ x'' + 2x' + x = 0 \end{cases} x(0) = y(0) = y'(0) = 0 \);
2) \(\begin{cases} x' + y' - y = e^t, \\ 2x' + y' + 2y = \cos t \end{cases} x(0) = y(0) = 0 \);
3) \(\begin{cases} y' = x + z, \\ x' = 2x - y - z, \\ z' = -3x + y - 2z \end{cases} x(0) = 1, y(0) = 1, z(0) = 0 \).

105. Решить интегральные уравнения типа свертки:

1) \(\int_{0}^{t} sh(t - \tau) x(\tau) d\tau = 1 - \cos t \); 2) \(1 + \int_{0}^{t} e^{t - \tau} x(\tau) d\tau = x(t) \);
3) \(t^3 + \int_{0}^{t} \sin(t - \tau) x(\tau) d\tau = x(t) \); 4) \(\int_{0}^{t} \cos(t - \tau) x(\tau) d\tau = t \cos t \).